of HydInfra and Culvert Cost MnDOT's version of drainage asset management

29JUL16

HydInfra = <u>Hyd</u>raulic <u>Infra</u>structure

MnDOT's Culvert and Storm Drainage System Inventory and Inspection Program

(Culverts less than 10 foot span)

Big storm + bad pipe = wrecked road

We could have fixed it cheaper, sooner

Road fill washes out at each burst of rain

CMP Storm Drain at MnDOT Oakdale Office in 2015

Pipe with Holes causes Piping and Road Void

While some steep slopes are prone to failure leaking pipes lubricate the slide

Photo by MnDOT Oakdale Surveys

Soil crack to left of pipe end indicates slope failure. US Highway 8, April 2016

Void in Road – Evidence of a loss of soil from the road around or near the pipe or other feature.

D6 Jacked Pipe creates road void 27SEP2011 – Rob Coughlin

Typical Culvert Failure has a pavement patch

MN 95 2015 Eric Brenna

Water flows along the outside of pipe carrying road fill away.

Culvert Cost WIG on the Road to Drainage Asset Management

HydInfra Inspectors inspect drainage features with Trimble GPS devices

(Terrasync or ArcPad software)

Key Experts in each District process the data with Pathfinder Office software and upload the data files through a web portal.

HydInfra Culvert and Storm Drain

Pipes by Condition

July 2016

Maintenance records Culvert Repair Cost with ArcGIS Online Application for iPad or PC

	Legend
	<all other="" values=""></all>
REP	AIR MADE by Maintena
٥	Beavers
	Cleaning
٢	Ditch Cleaning
	Fill Voids
	Hole Repair
0	Ice Removal
	Joint Repair
	Other
	Paved Invert
	Replace Aprons
	Reset
	Slipline
	Trench New Pipe
	MN_Counties

....

Average Estimated Maintenance Cost of Culvert Repair										
Repair Category	Culvert Categories	Number of Repairs	Average Repair Cost							
Trench New Pipe	All	314	\$ 8,430							
	Highway 1		\$32,170							
	Side ²		\$ 9,610							
	Entrance ³		\$ 5,160							
Slipline		47	\$12,570							
Reset Apron and Pipe		66	\$ 3,000							
Replace Apron and Pipe		52	\$ 3,000							
Joint Repair		33	\$ 2,710							
Pipe Extension		15	\$ 4,060							
Hole Repair		4	\$ 2,000							
Fill Void		6	\$ 1,020							
Other		13	\$11,270							
All Culvert Repairs		550								

¹ Highway culverts include: centerline, mainline, median, CD and ramp-loop

² Side culverts include: city, county, township, frontage, cross-over

³ Entrances culverts include: entrance, farm entrance and field entrance

Bridge Hydraulics is the Hub for Drainage Asset Management

Feedback gets incorporated from all around and back:

TAM software transition from HydInfra and Culvert Repair Cost to Agile Assets begins September 2016

- 1. District Hydraulics\WRE Engineers & Designers
- 2. District Maint. Supervisors and Engineers
- 3. District HydInfra Inspectors
- 4. District Maint. Drainage Repairers
- 5. Asset Management group Agile Assets leaders
- 6. MnDOT Planning and Management
- 7. Federal guidance and best practices
- 8. Ideas from other States and entities

HydInfra sprang from the 1986 Culvert Inspection Manual

with some important differences . . .

MnDOT Hydraulic Engineers designed HydInfra in 1996

- Condition Ratings 1 4
- Flags and Measures record defects
- Criteria for each Material type
- Culverts less than 10 foot span
- Automated from the get-go
 - Centralized database
 - GPS
 - GIS

Hired a specialist for database development – Thomas Martin

HydInfra spawned the FLH Culvert Manual (2010) codes and later NCHRP 14-26 Culvert and Storm Drain Inspection Manual (2016)

more frequent

warranted.

informed.

inspection may be

Maintenance should be

need for corrective

ction and makes

recommendation in

inspection report.

required to address

public safety hazard.

Roadway closure is

typical.

Engineering evaluation

is recommended to

specify appropriate

repair.

Action Indicated. *Compare the* **Notes** sections too.

ACTION

INDICATED

No action is

recommended. Note

inspection report only

HydInfra described as "The Best" among DOT's Culvert Management Systems*

- 2012 TAMP Transportation Asset Management Plan – Pilot project will include HydInfra
 - 2011 NCHRP 14-26 project to create "Culvert Inspection Manual" includes us
- 2007 -- Featured in FHWA Culvert Management Systems booklet

Put Your Drainage Asset Management System to Work

presented at the National Hydraulic Engineers Conference in Iowa City, August 2014.

(Concrete Pipe Association requested we present at their conference in Texas 2015 but we had to refuse.)

2016 American Public Works Conference in Mpls -- *Culvert Inspection and Repair -- We could have fixed it cheaper, sooner!*

* Feb 2015, Marie Venner, consultant who has researched and written 2 FHWA guides to Culvert Management Systems

HydInfra can capture all kinds of Drainage Feature Types

Pipes – Culvert, Storm Drain, Drain Tile, Tunnels, etc.

- Structures MH, CB, DI
- Special Structures Aprons, Weirs, (catch all)
- Ponds Infiltration, Wet, Dry, etc
- WQ devices- swirling separators, skimmers etc.
- Ditches
- Discharge Points Outfalls (MS4) Infalls , etc.
- Illicit Discharges
- Environmental pH, resistivity locations

Highway Culvert Inspections are scheduled according to Performance Measures

Inspection Cycle for Drainage Performance Measure

Recon	nmended Insp	ection Frequency for Highway Culverts
Overall Condition	Recommended Inspection Frequency Years	comments Inspection c
4	2	Pipes where problem is not under the road
Very Poor	1	Pipes where problem requires a repair under Condition 1. 1
3	4	Most condition 3 pipes
Poor	2	Pipes with Piping or Road Void (these shot CONDITION 2.
1 & 2 Like New and Fair	6	Condition 2. 4 years
0 Can't be Rated	2	Condition 1. 6 years
Pipes with no inspections		Goal to inspect within 6 years - 2019, mai pipe, so as districts identify pipes as storn reduced Condition 0: 2 years
Overall	Target: 80% of Hig	hway Dines meet Recommended Inspection Frequency

Start with inventory and inspection cycle
Later target to reduce numbers of bad pipes

Holes or Joint Separations in pipes create Piping and Road Voids

HydInfra Inspection Manual

Culvert and Storm Drainage Systems

Condition Rating Codes:

Condition Rating Codes suggest the need for repair

Pipe Materials &

to track performance

Concrete

- Corg. Steel (CSP)
- Structural Plate
- Polymeric-Coated
- Bituminous-Coated
- Aluminized Steel

Corg. Aluminum (CAP)

Timber

Vitrified Clay

Other

- Corg. Plastic (HDPE)
- Perforated Plastic
- Polypropylene
- SRPE (Steel Reinforced PolyEthylene)

"Liner" materials describe a lined pipe:

- Liner HDPE
- Liner PVC

- Liner Cured in Place
- Liner Metal
 - Liner Other

Each Material Type has explicit rating criteria

HydInfra Ratings Guide

Concrete Pipe & Special Structure

Factors: Structural integrity, Integrity of surrounding material

- 1 Excellent Condition
 - Minor chipping at joints/openings
 - Hairline cracks
 - Insignificant spalling or scaling

2 Fair Condition

- Joints broken or pulled apart up to 1" (anywhere along joint)
- Aggregate exposed
- Cracks evident with widths up to 1/8 inch
- Spalling or scaling to 1/4 inch depth

3 Poor Condition

Iginte broken or nulled apart 1^s 2^s (anywhere along the igint)

4 Very Poor Condition

- Joints pulled apart or broken (more than 3" at any point along joint)
- Cracking evident with widths > 1/4 inch
- Reinforcement fully exposed in places
- Eroded holes through concrete or bottom gone
- Deformation
- Cracks showing movement pipe pieces have shifted
- Pipe condition is causing soil loss beneath road surface

Pipe condition is causing soil loss beneath road surface

Notes:

Special Structures include Aprons, Slotted Drain, Headwalls, Wingwalls, open Flumes, Weirs, Expander/Reducers, Floodgates, Energy Dissipaters and other items that are <u>not</u> Pipes, Structures, SPCDs (Structural Pollution Control Devices), Ponds or Ditches.

eath road

Attributes such as crack width and spalling depth won't be measured in most cases inspectors must estimate sizes based on what they see.

Drainage System Inspection Manual

"Flags" and "Measures" describe the defects

Condition Indicators

- -Needs Repair?
- -Piping
- -Cracks
- -Holes
- -Deformation
- -Misalignment
- —Max Joint Separation
- -# Separated Joints
- -Separated Apron
- -Spalling/Flaking
- -Pitting/Rusting
- -Infiltration

Roadway Indicators

- -Void in Road
- -Road Distress
- -Inslope Cavity
- -Erosion/Scour

Not in Condition Rating

- -Needs Clean?
- -Plugged
- -Silt
- -Sediment % Full
- -Standing Water

Together

Materials, explicit criteria and defect flags

create solutions

9Research Pipe Materials

Inspection flags show hotspots for Joint Separation in Concrete Pipe

This 2011 map was created after Highway Culvert inventory was completed but before most Districts were focused on repairing pipes.

Flowchart Suggested Repair Report for estimating repair costs

Example shows northeast MN potential pipe repairs on the map

Statewide Pipe Repairs Cost Estimate from Suggested Repair Report

					Rep	air me	ethod					
A A	В	C	· · · · · · · · · · · · · · · · · · ·	-		1	_	Н		L		R
1		Repair me		_				ntract ave	rage bid			Contract
2 3 District	1		District	1				Unit Pi	Cost	trac	ct	Total Cost
4		CIPL	i î		CIP				\$183	973 97	3	
5		Grout		-	-			+		,38	1	
6 7		Jack Paved Invi			Gro	ut			\$77	.387 💾	5	
8		Reset			Jac	k		\$2,4	5968	165 37	4	
9		Slipline		_						2,38	3	
10 11 District	2	Trench	3	_	Pav	ed Inv	ert	\$26,3	\$40	.212 🛄	0	\$5,405,504
12	2	CIPL			Res	Reset			\$323	374 .53	3	
13		Grout		-						5,97	8	
14		Jack			Slip	Slipline			\$1.552	383 59	3	
15		Paved Inve	1		T	Transfer			ED 000	0 10 1.59	7	
16		Reset			Irer	ICN		\$2,4	<u>-</u>	.010,98	0	
17		Slipline	45		3562	\$93.22	foot			\$365,25	5	
18		Trench	21		1633	\$65.37	foot	\$26,362.	84 each	\$726,40	6	\$1,893,341
19 District	3											
20		CIPL	23		3637	\$129.65	foot			\$518,69	1	
21		Grout	5		644	\$32.48	foot			\$23,00	9	
22		Jack	8		1286	\$725.00	foot			\$1,025,58	5	
23		Paved Inve	ert 2		152	\$16.24		13		\$2,71	5	
24		Reset	11		1029			\$2,449.	80 each	\$29,64	3	
25	1 2	Slipline	44		3833	\$93.22	foot			\$393,04	3	<u>2010</u>
26		Trench	27		1848	\$65.37	foot	\$26,362.	84 each	\$915,86	0	\$2,908,546

The sorting process for repair suggestion is described in a 3-page flowchart on the web

Find the Flowchart for Suggested Repair Method (PDF) Send suggestions for improvement to bonnie.peterson@state.mn.us

Correlate sets of defects –"flags" with Material Type

Ν	laterial/Flag c			
	Concrete	Deformation	Spalling	
	Concrete	Joint Separation	Road Void	
	Concrete	Inslope Cavity	Joint Separation	
	Concrete	Joint Separation	Infiltration	
	Steel	Holes	Road Distress	
	Steel	Holes	Deformation	
	Steel	Holes	Piping	
	Steel	Holes	Road Void	
	HDPE	Cracks		
	HDPE	Misalignment (floating)		
	Liner HDPE	Deformation		

2. Prioritize based on today's requirement

Choose your biggest, worst culverts that have piping and road voids with shallow cover, and highest ADT (and highest price tag)

Or Prioritize based on today's funds

Choose the pipes that Maintenance can repair now with little cash:

Resets, Paved Inverts, Joint Repair

Know which pipes to fix before the paving project (not after)

HydInfra Project Design Report

Use Project Design Report to sort out drainage features that need repair

MnDOT	Hydinfra	Project D	Design R	ecomm	endation	Report
Data Date	7/14/2016					
Hwy 22			Ref. Pt.	145.00	to 157.00)

This report is used for project scoping or construction project hydraulic design recommendations. It draws from HydInfra inventory and inspection data for culvert and storm drain pipes, hydraulic structures (catchbasins, manholes, drop inlets) and special structures (pipe aprons or other items). This spreadsheet has only pipe data.

Designers review inspection data and determine repair or replacement needs. Flowchart

	INSPECTION SUMMARY																		
	SHEET					SIZE	LENGTH		STRUCT	HEIGHT	CONN	CONDITI	ON						Т
	NO.	R.P.	STA.	DIR	ID	(INCHES) (FEET)	MATERIAL	TYPE	(FEET)	PIPE	RATIN	G	CORRECTIVE ACTION	Work Code	D.C.	MISC. NOTES	UTM_X	
	1			1								1 2 3	4 0		R-L-O	1			
6																	-		-
8	SHEET NO	RP 🔻	STATIO - R	OAD TYP 🔻 🕴	R/ 👻 <u>HYD I</u> 🔻	✓ <u>SPA</u> ✓	RIS - LENGT	H (F' 🔻 🛛 MATERIAI	L V STRUCT TYP V	STRUCTURE F	CONN. PI	IPE 🔻 <u>Condit</u>	ION "T	CORRECTIVE ACTION	WORK CODE	COVER (FT)	MISC NOTES	· <u>utm x</u>	Ŧ
12		145.786	Cer	nterline	59734	6 24	24 7.	2 Concrete	Round			4				2 - 6 Feet		378,727.4	
13		146.338	Cer	nterline	59734	7 36	36 7.	2 Concrete	Round			4				2 - 6 Feet		378,754.8	
14		146.906	Cer	nterline	59734	8 24	24 9) Concrete	Round			3				2 - 6 Feet		378,776.8	
15		147.101	Cer	nterline	59734	9 24	24 6	6 Concrete	Round			3				6 - 10 Feet		378,783.9	
16		147.267	Cer	nterline	59735	0 36	36 7) Concrete	Round			4				2 - 6 Feet		378,791.0	
17		148.070	Cer	nterline	59735	1 24	24 6	6 Concrete	Round			3				2 - 6 Feet		378,845.0	
18		148.842	Cer	nterline	59735	2 24	24 4	3 Concrete	Round			4				2 - 6 Feet		378,882.1	
19		149.795	Cer	nterline	59735	3 36	36 5) Concrete	Round			4					378,914.4		
23		150.770	Cer	nterline	59735	7 24	24 8	3 Concrete	Round			4					378,533.0		
24		150.924	Cer	nterline	59735	8 24	24 8	3 Concrete	Round			4					378,540.6		
25		151.239	Cer	nterline	59735	9 24	24 8	3 Concrete	Round			3					378,574.7		
26		151.474	Cer	nterline	59736	0 24	24 8	3 Concrete	Round			4			2 - 6 Feet				
28		152.653	Cer	nterline	59736	2 36	36 12	0 Concrete	Round			3				2 - 6 Feet		378,668.5	
29		153.194	Cer	nterline	59736	3 24	24 7	5 Concrete	Round			4				2 - 6 Feet		378,682.1	
32		153.916	Cer	nterline	59736	6 36	60 7	5 Concrete	CattlePass			3				2 - 6 Feet		378,700.9	
33		154.246	Cer	nterline	59736	7 24	24 11	0 Concrete	Round			3				Over 20 Fee	t	378,710.1	
34		154.552	Cer	nterline	59736	8 24	24 10	0 Concrete	Round			3				2 - 6 Feet		378,718.0	
35		154.829	Cer	nterline	59736	9 24	24 8	Concrete	Round			4				2 - 6 Feet		378,725.7	
36		155.008	Cer	nterline	59737	0 24	24 10	0 Concrete	Round			3				Over 20 Fee	t	378,730.6	
37		155.329	Cer	nterline	59737	1 36	36 12	0 Concrete	Round			4				2 - 6 Feet		378,740.6	
38		155.592	Cer	nterline	59737	2 36	36 12	0 Concrete	Round			4				10 - 20 Feet		378,749.8	
39		156.057	Cer	nterline	59737	3 72	72 7	Concrete	Round			4				2 - 6 Feet		378,766.2	
40		156.139	Cer	nterline	59737	4 48	48 10	0 Concrete	Round			4				2 - 6 Feet		378,769.8	
41		156 393	Ce	nterline	59737	5 24	24 7	Concrete	Round			4				2 - 6 Feet		378 780 1	

How to use the Project Design Report is on the HydInfra webpage

Culvert Repair Cost

The purpose of the **Culvert Cost app** is to estimate the costs of future repairs by capturing Labor, Equipment and Materials costs of current repairs done by Maintenance

Paved Invert

- Trench New Pipe
- Slipline
- Replace Aprons
- Reset
- Extension
- Joint Repair
- Hole Repair
- Paved Invert
- Fill Voids
- Remove Only
- Abandon Only
- Other

Fix the invert of the pipe by pouring, troweling or covering the invert with concrete or other material, usually in a larger metal pipe (accessible for interior repair). May also include filling voids in road bed. Repaired Length = length of paved invert.

Paved Invert repair, done in 1971, on steel plate culvert still looks good in 2015. Has a channel that keeps most flows away from galvanized steel sides. 2005 Photo from Bergstrand, D1

Fresh Paved Invert

Pipe is condition 2 if repair is successful

D6 Rob Coughlin, 2013

Maintenance is switching culvert materials for longer lifespan

MnDOT Research shows projected lifespan for Galvanized Steel (red northeast MN is bad for galvanized) Culvert Cost - Maintenance Installed New Pipes 2014-2015

Culvert Cost app shows Plastic and Aluminized pipe installed by Maintenance (green and blue dots, galvanized are red dots)

Service Life Comparison

Minnesota Steel Culvert Pipe Service-Life Map Research

HydInfra-Culvert Cost Capabilities:

- 1. Performance Measures
- 2. Prioritize Repairs
- 3. Estimate Costs "Suggested Repair Method"
- 4. Maintenance Planning
- 5. Project Pre-design
- 6. Respond to flood damage
- 7. MS4 Water Quality record keeping
- 8. Utilities locations "Call before you dig"
- 9. Research pipe materials
- 10. Lifecycle cost analysis